US 550/160 Connection Pavement Justification Report

Project Number NH 5501-011

Project ID 22420



Colorado Department of Transportation Region 5 Engineering – Materials 2018

# Contents

| List of Figures                                                    | 3  |
|--------------------------------------------------------------------|----|
| List of Tables                                                     |    |
| Pavement Recommendation                                            | 4  |
| Pavement Design Analysis                                           | 5  |
| Traffic Loading                                                    | 5  |
| Climate                                                            | 7  |
| Roadbed Characterization                                           | 7  |
| Recommended Threshold Values of Performance Criteria               | 9  |
| Asphalt Binder Recommendations                                     |    |
| Appendix A – Specific Design Parameters                            |    |
| Appendix B – Soil Survey and R-Value                               |    |
| Appendix C – Pavement Designs                                      |    |
| Pavement M-E Design Report – HMA on Clay                           |    |
| Pavement M-E Design Report – HMA on Terrace Alluvium               |    |
| Pavement M-E Design Report – HMA on Bedrock                        |    |
| Pavement M-E Design Report – HMA Frontage Roads, CR 219 and CR 220 | 75 |
| Pavement M-E Design Report – HMA Ramp B                            | 95 |
| Pavement M-E Design Report – PCCP on Clay                          |    |
| Pavement M-E Design Report – PCCP on Terrace Alluvium              |    |
| Pavement M-E Design Report – PCCP on Bedrock                       |    |
| Pavement M-E Design Report – PCCP Roundabout                       |    |

## List of Figures

| Figure 1. US 550 Design Year 2020 AADTT        | 6  |
|------------------------------------------------|----|
| Figure 2. US 160 Design Year 2020 AADTT        | 6  |
| Figure 3. 20-Year Growth Factor                | 6  |
| Figure 4. 20-Year 18k ESALs                    | 7  |
| Figure 5. M-E Design Weather Station Selection | 7  |
| Figure 6. Five Closest Weather Stations        | 10 |
| Figure 7. Selected Weather Station             | 11 |
| Figure 8. PG Binder Selection                  | 12 |

## List of Tables

| Table 1. HMA Recommended Pavement Structure Summary         | 4  |
|-------------------------------------------------------------|----|
| Table 2. PCCP Recommended Pavement Structure Summary        | 4  |
| Table 3. Pavement Design Parameters                         | 5  |
| Table 4. Subgrade Classification                            | 8  |
| Table 5. Treatment of Expansive Soils                       | 9  |
| Table 6. HMA Threshold Values of Performance Criteria       | 9  |
| Table 7. PCCP Threshold Values of Performance Criteria    1 | 0  |
| Table 8. Specific ME-Design Factors    1                    | 13 |

## **Pavement Recommendation**

This report is to provide documentation to the Region 5, Durango Residencies for a roadway improvement project. The project completes the connection of US 550 to US 160 at the Grandview Interchange (US 550 MP 12.50– 16.86). The current two-lane configuration of US 550 will be upgraded to a four-lane facility with intermittent auxiliary lanes and sections of frontage road for residential and commercial access. A roundabout will be constructed at the Grandview Interchange to facilitate traffic movements between US 550 and US 160. County Roads 219 and 220 will be reconstructed and realigned to meet this new configuration.

The pavement recommendations were developed following the Colorado Department of Transportation 2019 ME Pavement Design Manual (PDM) and using the AASHTOWare Pavement Mechanistic Empirical Design (M-E Design) software, Version 2.3.1.

Two pavement types; Hot Mix Asphalt (HMA), and Portland Cement Concrete Pavement (PCCP), were considered for US 550 mainline. In addition to the two pavement types, three pavement designs for each type (6 total), were developed based on the discrete subgrade they are to be constructed.

Pavement for CR 219, CR 220, Frontage Roads, and Ramp B shall be HMA. Pavement for the Roundabout shall be PCCP.

| Segments                        | Thickness of HMA<br>Surface Course (in.) | Thickness of ABC<br>Class 6 Base (in.) | Thickness of ABC<br>Class 3 Subbase (in.) |
|---------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------|
| US 550 Subgrade Surficial Soils | 6                                        | 4                                      | 24                                        |
| US 550 Subgrade Alluvial Gravel | 6                                        | 4                                      | 0                                         |
| US 550 Subgrade Bedrock         | 6                                        | 4                                      | 24                                        |
| CR 219, CR 220, Frontage Rd.    | 5                                        | 4                                      | 24                                        |
| Ramp B                          | 6                                        | 6                                      | 8                                         |

**Table 1. HMA Recommended Pavement Structure Summary** 

ABC = Aggregate Base Course

## **Table 2. PCCP Recommended Pavement Structure Summary**

| Segments                        | Thickness of PCCP<br>Surface Course (in.) | Thickness of ABC<br>Class 6 (in.) | Thickness of ABC<br>Class 3 Subbase (in.) |
|---------------------------------|-------------------------------------------|-----------------------------------|-------------------------------------------|
| US 550 Subgrade Surficial Soils | 8.5                                       | 4                                 | 24                                        |
| US 550 Subgrade Alluvial Gravel | 8.5                                       | 4                                 | 0                                         |
| US 550 Subgrade Bedrock         | 8.5                                       | 4                                 | 24                                        |
| Roundabout                      | 9.5                                       | 4                                 | 24                                        |

ABC = Aggregate Base Course

## **Pavement Design Analysis**

Pavement performance is dependent upon several factors, including; traffic loading and climate. Table 3 summarizes the HMA and PCCP pavement design parameters, specific design parameters can be found in Appendix A.

|                                                    |                 | Input                                         |                 |
|----------------------------------------------------|-----------------|-----------------------------------------------|-----------------|
| Parameters                                         | US 550 Mainline | CR 219, CR 220,<br>Frontage Rd. and<br>Ramp B | Roundabout      |
| Reliability                                        | 90%             | 90%                                           | 90%             |
| Two Way annual average daily truck traffic (AADTT) | 589             | 200/300                                       | 1,500           |
| Number of Lanes in Design Direction                | 2               | 1                                             | 1               |
| Percent of Trucks in Design Direction              | 50              | 60                                            | 60              |
| Percent of Trucks in Design Lane                   | 90              | 100                                           | 100             |
| Operational speed (mph)                            | 45 mph          | 25 mph                                        | 20 mph          |
| Vehicle Class Distribution (CDOT)                  | Cluster 3       | Cluster 3                                     | Cluster 3       |
| Growth rate %                                      | 1.25            | 1.0/1.25                                      | 1.25            |
| Growth function                                    | Compound        | Compound                                      | Compound        |
| Climate station                                    | Durango, CO     | Durango, CO                                   | Durango, CO     |
| Depth of Water Table                               | 10              | 10                                            | 10              |
| Design life (Rigid)                                | 30-year minimum | NA                                            | 30-year minimum |
| Design life (Flexible)                             | 20-year minimum | 20-year minimum                               | NA              |
| Performance criteria thresholds                    |                 | See Table 6 and Table                         | 7               |

## **Table 3. Pavement Design Parameters**

A discussion of design parameters and recommended threshold values of performance is provided below.

## **Traffic Loading**

CDOT Online Transportation Information System (OTIS) was used to determine current and future traffic for this project (<u>http://dtdapps.coloradodot.info/otis</u>).

Average Annual Daily Truck Traffic (AADTT) is a design input for M-E Design and is calculated as the sum of projected single unit and projected combination trucks. From OTIS, the AADTT for the design year (2020) is 589 for mainline US 550. The AADTT for the roundabout is 1,500 and was calculated by combining US 550 and US 160 traffic.

| ati | ions A4      | DT       | Future                | Traffic       | F          |                  |                 |                     |              |           |                         |                           |                |
|-----|--------------|----------|-----------------------|---------------|------------|------------------|-----------------|---------------------|--------------|-----------|-------------------------|---------------------------|----------------|
|     |              |          |                       |               |            |                  |                 |                     |              |           |                         |                           |                |
| un  | nd 2 Short [ | Duration | station               | s and 0       | Contin     | uous (           | Count stations. | . Click the magnify | ing glass ic | on in     | front of a static       | n to see count data below | v.             |
|     |              |          |                       | 2.1           |            |                  |                 |                     |              |           |                         |                           |                |
| roj | jection Ye   | ear: 20  | 20                    |               |            |                  |                 |                     |              |           |                         |                           | Export to Exce |
| roj | jection Ye   | ear: 20  | 20                    |               |            |                  |                 |                     |              |           |                         |                           | Export to Exce |
| roj | jection Ye   | ear: 20  | 20<br>Start           | End           | AADT       | Year             | Single Trucks   | Combined Trucks     | % Trucks     | DHV       | Projected AADT          | Projected Single Trucks   | Export to Exce |
| roj | jection Ye   | Route    | 20<br>Start<br>12.192 | End<br>15.682 | AADT 7,300 | <b>Year</b> 2016 | Single Trucks   | Combined Trucks     | % Trucks     | DHV<br>12 | Projected AADT<br>7,680 | Projected Single Trucks   | Export to Exce |

## Figure 1. US 550 Design Year 2020 AADTT

| oun |                      |               |                 |               |                |              |                |                        |                 |           |                          |                                |                           |
|-----|----------------------|---------------|-----------------|---------------|----------------|--------------|----------------|------------------------|-----------------|-----------|--------------------------|--------------------------------|---------------------------|
|     | IC Z SHOLL D         | uration       | station         | s and O       | Continu        | ious Co      | ount stations. | Click the magnifyi     | ng glass ic     | on in t   | front of a station       | to see count data below        |                           |
| oi  | ection Ye            | ar: 20        | 20 3            | :             |                |              |                | 5 7                    | 55              |           |                          |                                | Export to Exce            |
| -   |                      |               | 2               |               |                |              |                |                        |                 |           |                          |                                | Export to Exce            |
|     |                      |               |                 |               |                |              |                |                        |                 |           |                          |                                |                           |
|     | Station ID           | Route         | Start           | End           | AADT           | Year         | Single Trucks  | Combined Trucks        | % Trucks        | DHV       | Projected AADT           | Projected Single Trucks        | Projected Combined Trucks |
| 3   | Station ID<br>104812 | Route<br>160A | Start<br>86.486 | End<br>88.316 | AADT<br>38,000 | Year<br>2016 | Single Trucks  | Combined Trucks<br>380 | % Trucks<br>2.3 | DHV<br>10 | Projected AADT<br>40,584 | Projected Single Trucks<br>523 | Projected Combined Trucks |

## Figure 2. US 160 Design Year 2020 AADTT

A compound growth rate is used to account for traffic increase with time. The growth rate equation can be found in the 2019 PDM, Equation 3-1:

$$T_f = (1+r)^n$$

Where,

 $T_f = OTIS 20$ -Year Growth Factor r = Growth Rate n = Number of Years

From OTIS, the 20-Year Growth Factor for this project is 1.26 resulting in a Growth Rate of 1.16. For purposes of conservative design, this value was rounded to 1.25.

| ati | ons                     | AADT                       | Fu                 | ture Tr                 | affic                  | E!                       | SAL                               |                                |                   |                         |                          |                               |                                         |
|-----|-------------------------|----------------------------|--------------------|-------------------------|------------------------|--------------------------|-----------------------------------|--------------------------------|-------------------|-------------------------|--------------------------|-------------------------------|-----------------------------------------|
| oun | d 2 Sho                 | ort Dura                   | ation st           | ations a                | nd 0 C                 | ontin                    | uous Count sta                    | tions. Click th                | e magnifying glas | s icon in front o       | f a station to see count | data below.                   |                                         |
| uil | d Vear                  | - 2020                     | n                  | Deci                    | an l i                 | fo (v                    | rc) · 20                          | lanes.                         | 4 v Rigid n:      | avement.                |                          | Expor                         | t to Excel                              |
| uil | d Year                  | r: 2020                    | End                | Desi                    | gn Li                  | fe (y<br><sub>Year</sub> | rs): 20<br>20 Year Factor         | Lanes:<br>Single Trucks        | 4 • Rigid pa      | Projected AADT          | Projected Single Trucks  | Expor                         | t to Excel                              |
| uil | d Year<br>Route<br>550A | r: 2020<br>Start<br>12.192 | 0<br>End<br>15.682 | Desi<br>Length<br>3.447 | gn Li<br>AADT<br>7,300 | fe (y<br>Year<br>2016    | rs): 20<br>20 Year Factor<br>1.26 | Lanes:<br>Single Trucks<br>230 | A  Rigid pa       | Projected AADT<br>9,578 | Projected Single Trucks  | Projected Combined Trucks 433 | t to Excel<br>18 Kip ESALs<br>1,693,708 |

**Figure 3. 20-Year Growth Factor** 

From OTIS, the 20-year 18k ESALs are 1,693,708 in the design lane, resulting in a 75 gyration mix (PDM table 6.9).

| at<br>our | ions<br>nd 2 Sho<br>d Year | AADT            | Fur           | ture Tr<br>ations a<br>Desi | affic<br>nd 0 C<br>ign Li | ontin<br>fe (y      | AL<br>uous Count stat  | tions. Click th<br>Lanes: | e magnifying glas      | s icon in front of<br>avement: □ | f a station to see count | data below.                   | t to Excel  |
|-----------|----------------------------|-----------------|---------------|-----------------------------|---------------------------|---------------------|------------------------|---------------------------|------------------------|----------------------------------|--------------------------|-------------------------------|-------------|
|           |                            |                 |               |                             |                           |                     |                        |                           |                        |                                  |                          |                               |             |
|           | Route                      | Start           | End           | Length                      | AADT                      | Year                | 20 Year Factor         | Single Trucks             | Combined Trucks        | Projected AADT                   | Projected Single Trucks  | Projected Combined Trucks     | 18 Kip ESAL |
| 9         | Route<br>550A              | Start<br>12.192 | End<br>15.682 | Length<br>3.447             | AADT<br>7,300             | <b>Year</b><br>2016 | 20 Year Factor<br>1.26 | Single Trucks             | Combined Trucks<br>330 | Projected AADT<br>9,578          | Projected Single Trucks  | Projected Combined Trucks 433 | 18 Kip ESAL |

Figure 4. 20-Year 18k ESALs

## Climate

Durango, CO weather station was selected within the M-E Design program. M-E Design uses weather station data to predict the pavements response to climatic factors such as temperature, precipitation and freeze/thaw cycles.

| Climate Data Sources:                          |                                                   |                | Monthly Rainfall Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------|---------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Climate Station Cities:<br>DURANGO LA PLATA, C | Location (lat lon elevatio<br>37.14300 -107.76000 | n(ft))<br>6685 | 0.041<br>1.01130_084<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.041<br>0.0 |
| Annual Statistics:                             |                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean annual air temperature                    | (°F) 2                                            | 7.07           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean annual precipitation (in)                 |                                                   | 8.96           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Freezing index (°F - days)                     | 65                                                | 50.37          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Average annual number of fre                   | eze/thaw cycles: 16                               | 3.30           | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

**Figure 5. M-E Design Weather Station Selection** 

## **Roadbed Characterization**

Yeh and Associates preformed a geotechnical investigation to identify surface and subsurface conditions along the proposed alignment. The findings from this investigation can be found in the *Draft Geotechnical Data Report* (GDR) prepared by Yeh and Associates, Inc., dated July 17, 2018.

From the GDR, subsurface conditions along the proposed alignment can be classified into three distinct layers; surficial soil (low plasticity and high plasticity clay); terrace alluvium (gravelly soil); and bedrock (claystone with interbedded shale, sandstone and conglomerate). Because the proposed alignment will be constructed on these distinct subgrades, three discrete pavement designs (for each pavement material), were developed to optimize use of in-situ conditions. For purposes of pavement design, the subgrade was characterized as follows:

| Layer               | AASHTO<br>Classification | <b>R-value</b> | Resilient<br>Modulus (psi) | Plasticity<br>Index | Approximate<br>Location |
|---------------------|--------------------------|----------------|----------------------------|---------------------|-------------------------|
| Surficial Clay      | A-7-6                    | 10             | 6,482                      | 27                  | South End               |
| Terrace<br>Alluvium | A-1-b                    | 79             | 15,000 (max)               | NP                  | Middle Portion          |
| Claystone           | A-6                      | 23             | 8,152                      | 12                  | North End               |

**Table 4. Subgrade Classification** 

Pavement sections are layered systems and cannot be modeled as a homogeneous mass, therefore, the design resilient modulus ( $M_r$ ) of the aggregate base and subbase layers must be adjusted for limiting modulus criteria. This phenomenon is described by the elastic layer theory and is necessary to avoid decompaction and build-up of tensile stresses in the unbound layers. Following the elastic layer theory, the  $M_r$  of subbase was determined to be 15,000 psi and the  $M_r$  of the base layer was 25,000 psi (PDM figure 5.2 and 5.3).

Following Chapter 4 of the PDM, the design resilient modulus was determined using the R-value correlation equation (Eq. 4-1, PDM):

$$M_r = 3438.6 \times R^{0.2753}$$

Where, M<sub>r</sub> = Resilient Modulus (psi) R = R-value (AASHTO T 190)

Section 4.9 of the CDOT 2019 M-E Pavement Design Manual, Expansive Subgrade Soils, recommends Depth of Treatment Below Normal Subgrade based on Plasticity Index (PI). Surficial soils and bedrock within the project limits were sampled and analyzed for their physical properties. As reported in the GDR, the PI of the surficial soil and bedrock layers for areas of proposed "cut" was found to range from 8 to 27.

In order to maintain a consistent pavement section throughout the project length, the baseline pavement design requires 3 feet of subgrade treatment. This 3-foot treatment consists of 1-foot of subgrade, excavated; moisture-conditioned; and recompacted in accordance with Section 203 of the 2017 CDOT Standard Specifications, overlain by 2 feet of subbase. To achieve the project goal of maximizing the use of available on-site materials, the subbase course shall consist of granular material derived from the terrace alluvium deposit: Aggregate Base Course (ABC) Class 3 or material with a minimum R-Value of 70.

A filter separator layer is required on top of the reworked subgrade, directly beneath the subbase layer. Edge drains may be required to collect and divert water from the pavement structure.

| Plasticity<br>Index | Depth of Treatment Below Normal<br>Subgrade Elevation                                          |
|---------------------|------------------------------------------------------------------------------------------------|
| 10 - 20             | 2 feet                                                                                         |
| 20 - 30             | 3 feet                                                                                         |
| 30 - 40             | 4 feet                                                                                         |
| 40 - 50             | 5 feet                                                                                         |
| More than 50        | Placed in the bottom of fills of less than 50 feet or greater than 6 feet in height, or wasted |

## **Table 5. Treatment of Expansive Soils**

 Table adapted from Table 4.9 of the CDOT 2019 M-E Pavement Design Manual

## **Recommended Threshold Values of Performance Criteria**

M-E Design uses limiting threshold values of pavement distress and smoothness to evaluate the adequacy of a design. Table 5 provides the limit and predicted threshold values for new construction of Flexible Pavements and Table 6 shows criteria for new construction of Rigid Pavement (PDM table 2.4 and 2.6).

| Performance<br>Criteria                                 | Limit | Surficial<br>Clay<br>Predicted | Terrace<br>Alluvium<br>Predicted | Claystone<br>Predicted | Frontage<br>and CR<br>Predicted | Ramp B<br>Predicted |
|---------------------------------------------------------|-------|--------------------------------|----------------------------------|------------------------|---------------------------------|---------------------|
| Terminal IRI<br>(inches per mile)                       | 200   | 166.01                         | 163.06                           | 165.78                 | 168.39                          | 164.82              |
| AC Top-Down<br>Fatigue Cracking<br>(feet per mile)      | 2,500 | 1070.44                        | 1903.42                          | 1287.90                | 1214.32                         | 751.20              |
| AC Bottom-Up<br>Fatigue Cracking<br>(percent lane area) | 25    | 20.67                          | 18.52                            | 19.86                  | 22.89                           | 15.90               |
| AC Thermal<br>Cracking<br>(feet per mile)               | 1,500 | 656.15                         | 660.29                           | 657.14                 | 764.24                          | 655.97              |
| Permanent<br>Deformation<br>(total inches)              | 0.65  | 0.53                           | 0.49                             | 0.53                   | 0.53                            | 0.54                |
| Permanent<br>Deformation AC<br>Only (total inches)      | 0.50  | 0.38                           | 0.37                             | 0.38                   | 0.38                            | 0.41                |

## Table 6. HMA Threshold Values of Performance Criteria

| Performance Criteria                        | Limit | Surficial<br>Clay<br>Predicted | Terrace<br>Alluvium<br>Predicted | Claystone<br>Predicted | RAB<br>Predicted |
|---------------------------------------------|-------|--------------------------------|----------------------------------|------------------------|------------------|
| Terminal IRI<br>(inches per mile)           | 200   | 149.72                         | 149.48                           | 149.61                 | 153.18           |
| Mean Joint Faulting<br>(inches)             | 0.14  | 0.01                           | 0.01                             | 0.01                   | 0.03             |
| JPCP Transverse Cracking<br>(percent slabs) | 7.00  | 6.92                           | 6.33                             | 6.67                   | 5.45             |

Table 7. PCCP Threshold Values of Performance Criteria

## **Asphalt Binder Recommendations**

Using the Long Term Pavement Performance (LTPP) binder selection program (LTPPBind 3.1), the 98% reliability binder for this project area is PG 58-28. From LTPPBind; Figure 6 shows the weather stations in the project vicinity, Figure 7 shows the selected station, Figure 8 shows the PG binder selection.

| General                  | A=8 km        | B=17 km       | C=22 km       | D=26 km       | E=30 km       |
|--------------------------|---------------|---------------|---------------|---------------|---------------|
| Station ID               | C02432        | CO3016        | CO4250        | /CO4934       | /C08582       |
| County/District          | la plata      |
| Weather Station          | durango       | fort lewis    | ignacio 1 n   | lemon dam     | vallecito dam |
| Elevation, m             | 1867          | 2153          | 1830          | 2290          | 2167          |
| Latitude, Longitude      | 37.28,107.88  | 37.23 ,108.05 | 37.13 ,107.63 | 37.38 ,107.65 | 37.37 ,107.58 |
| Last Year Data Available | 1990          | 1997          | 1991          | 1997          | 1997          |
|                          |               |               |               |               |               |
| Air Temperature          | Mean (Std, N) |
| High Temperature         | 33.3 (13,28)  | 30.2 (11,34)  | 33.9 (14,27)  | 29.1 (13,15)  | 29.6 (14,34)  |
| Low Temperature          | -23.7 (41,28) | -25.7 (39,35) | -25.4 (55,26) | -24.7 (33,15) | -27.5 (39,35) |
| Low Temperature Drop     | 26.8 (20,28)  | 26 (26,35)    | 30.7 (44,26)  | 26 (17,15)    | 27.4 (23,35)  |
| Degree-Days > 10C        | 2838 (177,28) | 2267 (161,34) | 2856 (235,27) | 2061 (139,15) | 2139 (213,34) |
|                          |               |               |               |               |               |
| PG                       | High Low Rel. |
| Pavement Temperature, C  | 55.2 -15.4    | 50.0 -16.9    | 55.4 -16.6    | 48.0 -16.2    | 48.8 -18.2    |
| 50% Reliability PG       | 58-16 (98,56) | 52-22 (98,93) | 58-22 (98,88) | 52-22 (98,96) | 52-22 (98,86) |
| >50% Reliability PG      | 58-22 (98,96) | 52-28 (98,98) | 58-28 (98,98) | 52-28 (98,98) | 52-28 (98,98) |
| =                        | 58-28 (98,98) |               |               |               |               |
| =                        |               |               |               |               |               |
| =                        |               |               |               |               |               |
| 1.1.1.1                  |               |               |               |               |               |

**Figure 6. Five Closest Weather Stations** 

| State/Province         |          |       |         | co       |       | •    |         |
|------------------------|----------|-------|---------|----------|-------|------|---------|
| Weather Station        | DURA     | NGO   |         |          |       | •    |         |
| Station ID             | C02432   |       | 1       | Latitude | e     |      | 37.28   |
| County / District      | LA PLATA |       |         | Longitu  | Ide   |      | 107.88  |
| Last Year Data Avail.  | 1990     |       |         | Elevatio | on, m |      | 1866    |
| Air Temperature        |          | Mean  | Std Dev | Min      |       | Max  | Years   |
| High Air Temperature,  | Deg. C   | 33.3  | 1.3     | 31.2     | 2     | 37.4 | 28      |
| Low Air Temperature,   | Deg. C   | -23.7 | 4.1     | -34.     | 5     | -16  | 28      |
| Low Air Temp. Drop, De | eg. C    | 26.8  | 2       | 22       |       | 32   | 28      |
| Degree Days over 10 De | eg. C    | 2838  | 177     | 2580     |       | 3278 | 28      |
| Pavement Temperature   | e and PG | HIGH  | LOW     |          | High  | Rel  | Low Rel |
| Pavement Temperature   | e, C     | 55.2  | -15.4   | L.       | 50    |      | 50      |
| 50% Reliability PG     |          | 58    | -16     |          | 98    |      | 56      |
| >50% Reliability PG    |          | 58    | -22     |          | 98    |      | 96      |
| -                      |          | 58    | -28     |          | 98    |      | 98      |
| -                      |          |       |         |          |       |      |         |
| =                      |          |       |         |          |       |      |         |
| =                      |          |       |         |          |       |      |         |

Figure 7. Selected Weather Station

| rarameter                                                                 | A=8 kr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n B=17 km       | C=22 km       | D=26 km    | E=30 km |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|------------|---------|--|
| Station ID                                                                | /C024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32 XCO3016      | XC04250       | XC04934    | C08582  |  |
| Elevation, m                                                              | 6124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7060            | 6001          | 7511       | 7107    |  |
| Degree-Days >10 C                                                         | 2838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2267            | 2856          | 2061       | 2139    |  |
| Low Air Temperature, C                                                    | -23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -25.7           | -25.4         | -24.7      | -27.5   |  |
| Low Air Temp. Std Dev                                                     | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.9             | 5.5           | 3.3        | 3.9     |  |
| Input Data                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All G.          |               |            |         |  |
| Latitude, Deg                                                             | aree 37.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lowest Ye       | arly Air Temp | erature, C | -23.7   |  |
| Vearly Degree-Days>10 D                                                   | en C 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low Air Te      | mn Standard   | Dev Deg C  | 4.4     |  |
|                                                                           | In the second se |                 |               |            | 1.00    |  |
| T                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Toole Advert    |               |            |         |  |
| - Temperature Adjustme                                                    | ents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Iramc Adjusti | nents for HI  | Traffic S  | speed   |  |
| Base HT PG                                                                | 58 👻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Traffic Loadin  | g             | Fast       | Slow    |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Up to 3 M. ES   | AL            | 0.0        |         |  |
| Desired Reliability, %                                                    | 98 💌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 to 10 M. ES.  | AL            | 7.1        | 9.5     |  |
| Death of Leaves and                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 to 30 M. ES  | AL            | 12.3       | 14.5    |  |
| Depth of Layer, mm                                                        | 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Above 30 M.     | ESAL          | 14.5       | 16.6    |  |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |            |         |  |
| PG Temperature                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | HIGH          | 10         | ow      |  |
| PG Temp. at 50% Reliabi                                                   | ility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 55.2          | -          | 15.4    |  |
| PG Temp at Desired Rel                                                    | liability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 57.0          | -          | 22.9    |  |
| i o remp. at beanca nei                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 0             |            |         |  |
| Adjustments for Traffic                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 0.0           | 0          | .0      |  |
| Adjustments for Traffic<br>Adjustments for Depth                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |            | 22.0    |  |
| Adjustments for Traffic<br>Adjustments for Depth<br>Adjusted PG Temperatu | re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 57.0          | -          | 22.9    |  |

Figure 8. PG Binder Selection

# Appendix A – Specific Design Parameters

| Design Parameter                   | US 550             | Frontage Rd.<br>and CR | Ramp B       | Roundabout         |
|------------------------------------|--------------------|------------------------|--------------|--------------------|
| Reliability (%)                    | 90                 | 90                     | 90           | 90                 |
| Highway Classification             | Principal Arterial | Other                  | Other        | Principal Arterial |
| Operational Speed (mph)            | 45                 | 25                     | 25           | 20                 |
| AADTT (2020)                       | 589                | 200                    | 300          | 1,500              |
| Lanes (Each Direction)             | 2                  | 1                      | 1            | 1                  |
| Growth Factor                      | 1.26               | NA                     | NA           | 1.26               |
| Growth Rate                        | 1.25               | 1.0                    | 1.25         | 1.25               |
| Single Unit Truck (%)              | 32.3               | 32.3                   | 32.3         | 32.3               |
| Combination Truck (%)              | 36.8               | 36.8                   | 36.8         | 36.8               |
| Weather Station                    | Durango, CO        | Durango, CO            | Durango, CO  | Durango, CO        |
| Clay Subgrade R-value              | 10                 | 10                     | -            | -                  |
| Clay Subgrade M <sub>r</sub> (psi) | 6,482              | 6,482                  | -            | -                  |
| Alluvium Subgrade R-value          | 79                 | -                      | -            | -                  |
| Alluvium Subgrade Mr (psi)         | 15,000 (max)       | -                      | -            | -                  |
| Claystone Subgrade R-value         | 23                 | -                      | 23           | 23                 |
| Claystone Subgrade Mr (psi)        | 8,152              | -                      | 8,152        | 8,152              |
| Subbase Mr (psi)                   | 15,000 (max)       | 15,000 (max)           | 15,000 (max) | 15,000 (max)       |
| Base M <sub>r</sub> (psi)          | 25,000 (max)       | 25,000 (max)           | 25,000 (max) | 25,000 (max)       |
|                                    | HMA Specific I     | Design Paramete        | rs           |                    |
| Asphalt Binder                     | PG 58-28           | PG 58-28               | PG 58-28     | -                  |
| HMA Grade                          | (SX)               | (SX)                   | (SX)         | -                  |
| Design Gyrations                   | 75                 | 75                     | 75           | -                  |
| Design Life (years)                | 20                 | 20                     | 20           | -                  |
| Initial IRI (in/mile)              | 62                 | 62                     | 62           | -                  |
| Performance Threshold              | see Table 6        | see Table 5            | see Table 6  | -                  |
|                                    | PCCP Specific      | Design Paramete        | ers          |                    |
| Joint Spacing (ft.)                | 15                 | -                      | -            | 15                 |
| Slab Width (ft.)                   | 13                 | -                      | -            | 13                 |
| 28-Day MOR (psi)                   | 650                | -                      | -            | 650                |
| 28-Day Elastic Modulus (psi)       | 3,930,000          | -                      | -            | 3,930,000          |
| Design Life (years)                | 30                 | -                      | -            | 30                 |
| Dowel Diameter (inch)              | 1.25               | -                      | -            | 1.25               |
| Initial IRI (in/mile)              | 78                 | -                      | -            | 78                 |
| Performance Threshold              | see Table 7        | -                      | -            | see Table 7        |

## Table 8. Specific ME-Design Factors

## Appendix B – Soil Survey and R-Value

|                           | TMENT |                                                    |                    |                              |            |          |           |           |      |       | Form #15                 | 7 No        | Form #554 No          | Date:    |  |
|---------------------------|-------|----------------------------------------------------|--------------------|------------------------------|------------|----------|-----------|-----------|------|-------|--------------------------|-------------|-----------------------|----------|--|
| DEL IMINADY S             |       |                                                    |                    |                              |            |          |           |           |      |       | F0111 #15                | NO.         | N/A                   | 02/02/18 |  |
| FRELIVINARTS              |       | Note 1: If samples are submitted                   | leave sieve        | analysis                     | sectio     | n blank  |           |           |      |       | Project N                | 0           |                       | 02/02/10 |  |
|                           |       | Note 3: Sulfate content expresse                   | d as percent       | (dry so                      | il), or pi | pm in w  | ater.     |           |      |       | Project lo               | cation      | US 160-550 S Con      | nection  |  |
|                           |       | Note 2: Comments should be pla                     | ced in the de      | escriptio                    | n colun    | nn of th | e form.   |           |      |       | Project code (SA#) 19378 |             |                       |          |  |
|                           |       | Note 4: R-values referenced are                    | noted 'Surve       | ey by Gr                     | oup Cla    | ass' por | tion of t | this rep  | ort. |       |                          |             |                       |          |  |
|                           |       |                                                    |                    |                              | -          |          |           |           |      |       |                          |             |                       |          |  |
| STATION                   | TEST  |                                                    | SULFATE            | R-VAL                        |            | P        | er CP 24  | , Section | n 4  |       | LIQUID                   | PLASTIC.    | CLASSIFICATION<br>AND | MOIST.   |  |
| AND LOG                   | NO.   | DESCRIPTION                                        | (SO <sub>4</sub> ) | REF 3/4" 3/8" #4 #10 #40 #20 |            |          |           |           | #200 | LIMIT | INDEX                    | GROUP INDEX | %                     |          |  |
| Boring location R1        |       |                                                    |                    |                              |            |          |           |           |      |       |                          | -           |                       |          |  |
| 4-9'                      | R1    | Light Grey/Brown Clay (Sample) (MURPHYP182113574   | 1)                 | 10                           |            | 100      | 99        | 98        | 94   | 81    | 44                       | 27          | A-7-6 (21)            | 3.7      |  |
|                           |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| Boring location R2        |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| 4-9'                      | R2    | Dark Tan Clay (Sample) (MURPHYP1821140335)         |                    | *                            |            | 100      | 99        | 99        | 97   | 82    | 38                       | 23          | A-6 (18)              | 4.1      |  |
|                           |       | * Sample untestable, to be resampled               |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| Boring location R3        |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| 4-9'                      | R3    | Dark Grey/Brown Clay (Sample) (MURPHYP182114055    | 4)                 | *                            |            | 100      | 99        | 99        | 96   | 78    | 43                       | 27          | A-7-6 (20)            | 3.5      |  |
|                           |       | * Sample untestable, to be resampled               |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| Boring location R4        |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| 14-19'                    | R4    | Similar to R2                                      |                    |                              |            |          |           |           |      |       | 7                        |             |                       |          |  |
|                           |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| Boring location R5        |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| 4_9'                      | R5    | Light Red Clay (Sample) (MLIRPHYP1821140717)       |                    | 22                           | 98         | 97       | 97        | 96        | 95   | 88    | 34                       | 26          | A-6 (21)              | 43       |  |
| 4-0                       | 110   | Light Red Olay (Sample) (MISRITHT 1021140717)      |                    | 8000                         | 30         | 51       | 51        | 30        | 35   | 00    | 54                       | 20          | A-0 (21)              | 4.5      |  |
| Boring location R6        |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| 9-14'                     | R6    | Similar to R5                                      |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
|                           |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| Boring location R7        |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| 5-13'                     | R7    | Light Red Sandy Clay (Sample) (MURPHYP17CB07533    | 2)                 | 11                           |            |          |           | 100       | 97   | 77    | 41                       | 23          | A-7-6 (17)            | 6.8      |  |
|                           |       | (Resampled, See ensuing 555)                       |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| Boring location R8        |       | (                                                  |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| 10-15'                    | R8a   | Tan Sandy/Rocky Clay (Sample)(MURPHYP17CB08072     | 26)                | *                            |            |          | 100       | 99        | 99   | 90    | 40                       | 24          | A-6 (22)              | 2.4      |  |
| 15-20'                    | R8b   | Tan Sandy Clay (Sample)(MURPHYP17CB081624)         |                    | 18                           |            | 100      | 99        | 99        | 97   | 79    | 32                       | 16          | A-4 (0)               | 2.9      |  |
|                           |       | (Resampled, See ensuing 555) *Sample Untestable    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| Boring location R9        |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| 9-19'                     | R9    | Light Tan Fine Clay (Sample - combine 2)(MURPHYP17 | CB081948)          | 22                           | 100        | 99       | 99        | 97        | 91   | 57    | 27                       | 11          | A-6 (3)               | 2.8      |  |
|                           |       | (Resampled, See ensuing 555)                       |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| Boring location R12 5-18  | R12   | Rocky Cobbles w/Tan Clay (Sample) (MURPHYP18181)   | 04045)             | 18                           | 78         | 57       | 41        | 37        | 32   | 25    | 39                       | 23          | A-2-6 (1)             | 4.7      |  |
| glocation title 0-10      |       |                                                    |                    |                              |            |          |           |           |      |       |                          |             |                       |          |  |
| Boring location A2 10-25' | A2    | Reddish Sandy/Rocky Clay (Sample) (MURPHYP18181    | 04454)             | 28                           |            | 100      | 97        | 91        | 72   | 48    | 24                       | 6           | A-4 (0)               | 3.2      |  |
| <b>B1111111111111</b>     |       |                                                    |                    |                              |            |          | 1000      |           | 6.TT | 1017  |                          |             |                       |          |  |

□ Materials and Geotechnical
□ Region Materials Engineer
□ Resident Engineer

CDOT Form #555 04/09

| COLORADO DEPARTMENT OF TRANSPO | RTATION                                                                               | Form #157 No.      | Form #554 No.    | Date:        |
|--------------------------------|---------------------------------------------------------------------------------------|--------------------|------------------|--------------|
| PRELIMINARY SOIL SURVEY        |                                                                                       |                    | N/A              | 4/4 & 4/5/18 |
|                                | Note 1: If samples are submitted leave sieve analysis section blank.                  | Project No.        |                  |              |
|                                | Note 3: Sulfate content expressed as percent (dry soil), or ppm in water.             | Project location   | US 160-550 S Cor | nection      |
|                                | Note 2: Comments should be placed in the description column of the form.              | Project code (SA#) | 22420 (new 19378 | )            |
|                                | Note 4: R-values referenced are noted 'Survey by Group Class' portion of this report. |                    |                  |              |

| STATION                  | TEST |                                                           | SULFATE            | R-VAL |      | P    | er CP 24 | , Sectio | n 4 |      |       |       | CLASSIFICATION<br>AND | MOIST      |            |
|--------------------------|------|-----------------------------------------------------------|--------------------|-------|------|------|----------|----------|-----|------|-------|-------|-----------------------|------------|------------|
| AND LOG                  | NO.  | DESCRIPTION                                               | (SO <sub>4</sub> ) | REF   | 3/4" | 3/8" | #4       | #10      | #40 | #200 | LIMIT | INDEX | GROUP INDEX           | %          |            |
| Boring Location R71      |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| 10'-14'                  | R71  | Light reddish sandy clay (sample) WISNERL184B083458       |                    | 12    |      |      |          | 99       | 98  | 78   | 47    | 29    | A-7-6 (22)            | 4.3        |            |
|                          |      | (RESAMPLE of R7)                                          |                    |       |      |      |          |          |     |      | -     |       | 10 <sup>5</sup> Th    |            |            |
| Boring Location R81      |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| 10'-14'                  | R81a | Tan clay (sample) WISNERL184B084723                       |                    | 9     |      |      |          |          | 100 | 92   | 36    | 20    | A-6 (18)              | 2.7        |            |
| 14'-19'                  | R81b | Calcium coated(?) tan clay (sample) WISNERL184B084802     | 2                  | *     |      |      |          | 100      | 99  | 88   | 48    | 31    | A-7-6 (28)            | 3.5        |            |
|                          |      | (RESAMPLE of R8) *Sample Untestable                       |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| Boring Location R91      |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| 2'-10'                   | R91a | Calcium coated(?) light gray clay (sample) WISNERL184B0   | 084850             | *     |      |      |          | 100      | 98  | 89   | 47    | 30    | A-7-6 (27)            | 3.4        |            |
| 10'-15'                  | R91b | Light gray clay (sample) WISNERL184B084927                |                    | 18    |      |      |          | 97       | 91  | 60   | 30    | 14    | A-6 (6)               | 2.5        |            |
|                          |      | (RESAMPLE of R9) *Sample Untestable                       |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| Pit Location Knagg #1    |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
|                          | K1   | Mudstone/claystone (sample 2 sacks) WISNERL184B0849       | 56                 | 23    |      |      |          | 99       | 74  | 65   | 36    | 12    | A-6 (6)               | 6.2        |            |
|                          |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| Pit Location Knagg #2    |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
|                          | K2   | Weathered claystone (sample 2 sacks) WISNERL184B085       | 032                | -47   |      |      |          | 99       | 74  | 64   | 36    | 12    | A-6 (6)               | 6.3        |            |
|                          |      | (Possible Error Given Other Similar Matl. Results)        |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| Pit Location Knagg #3    |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
|                          | K3   | Pit-run gravel with large cobbles (sample 3 sacks) WISNER | RL184B0850         | 79    |      |      |          | 86       | 40  | 15   | NV    | NP    | A-1-b (0)             | 0.9        |            |
|                          |      |                                                           |                    |       |      |      |          |          |     |      |       |       | 1894                  |            |            |
| Boring Location WB2      |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| 22'-40'                  | WB2  | Gravel (sample) WISNERL184B150354                         |                    | -86   |      |      |          | 77       | 38  | 12   | NV    | NP    | A-1-b (0)             | 0.6        |            |
|                          |      | (Sample Invalid Due to ODEX Crushing of Matl.)            |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| Boring Location WC1      |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| 39'-55'                  | WC1  | Weathered mudstone bedrock (sample) WISNERL184B151        | 1857               | 25    |      |      |          | 99       | 84  | 70   | 34    | 12    | A-6 (7)               | 5.3        |            |
|                          |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| Boring Location E2       |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| 95'-105'                 | E2   | Weathered shale bedrock (sample) WISNERL184B152404        |                    | 25    |      |      |          | 100      | 88  | 65   | 31    | 11    | A-6 (5)               | 5.6        |            |
|                          |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
|                          |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
|                          |      |                                                           |                    |       |      |      |          |          |     |      |       |       |                       |            |            |
| Materials and Geotechnic | al   |                                                           |                    |       |      |      |          |          |     |      |       |       | с                     | DOT Form : | #555 04/09 |

Materials and Geotechnical
 Region Materials Engineer

Resident Engineer

## **Appendix C – Pavement Designs**

## Pavement M-E Design Report – HMA on Clay

| VD File M                    | <b>22</b><br>Jame: C:\Users\kempb\Docun | 420 U                      | <b>S 550_HM</b><br>s\22420_550 160 Conne      | A on Clay_F                         | INAL_24<br>IAL\22420 US 550_ | HMA on Clay_FINAL_24.    | dgpx         |
|------------------------------|-----------------------------------------|----------------------------|-----------------------------------------------|-------------------------------------|------------------------------|--------------------------|--------------|
| Design Inp                   | uts                                     |                            |                                               |                                     |                              |                          |              |
| Design Life:<br>Design Type: | 20 years<br>FLEXIBLE                    | Base c<br>Pavem<br>Traffic | onstruction:<br>ent construction:<br>opening: | May, 2020<br>May, 2020<br>May, 2020 | Climate Dat<br>Sources (La   | a 37.143, -10<br>at/Lon) | 7.76         |
| Design Struc                 | ture                                    |                            |                                               |                                     |                              | Traffic                  |              |
| Layer type                   | e Material Ty                           | /pe                        | Thickness (in)                                | Volumetric at Cor                   | nstruction:                  | Age (year)               | Heavy Trucks |
| Flexible                     | R3 Level 1 SX(75                        | 5) PG 58-                  | 6.0                                           | Effective binder                    | 10.7                         |                          | (cumulative) |
| NonStabilized                | ABC Class 6                             |                            | 4.0                                           | Air voids (%)                       | 5.5                          | 2020 (initial)           | 589          |
| Subgrade                     | A-1-b                                   |                            | 24.0                                          | <b>b</b>                            |                              | 2030 (10 years)          | 2 184 310    |
| Subgrade                     | A-7-6                                   |                            | Semi-infinite                                 | ]                                   |                              | 2040 (20 )0010)          | 2,104,010    |

### **Design Outputs**

### **Distress Prediction Summary** Distress @ Specified Reliability Reliability (%) Criterion **Distress Type** Satisfied? Target Predicted Target Achieved Terminal IRI (in/mile) 200.00 166.01 90.00 98.88 Pass Permanent deformation - total pavement (in) 0.65 0.53 90.00 99.34 Pass AC bottom-up fatigue cracking (% lane area) 25.00 20.67 90.00 94.84 Pass AC thermal cracking (ft/mile) 1500.00 656.15 90.00 100.00 Pass AC top-down fatigue cracking (ft/mile) 2500.00 1070.44 90.00 99.87 Pass Permanent deformation - AC only (in) 0.50 0.38 90.00 99.22 Pass

### Report generated on: 10/22/2018 9:35 AM

Version: 2.3.1hotfixCreated<sup>by:</sup> on: 8/26/2015 12:00 AM Approved by: on: 8/26/2015 12:00 AM

Page 1 of 20





### **Distress Charts**



| 0.7 | -                | - | 0.   | 55 | -    | - | -   |
|-----|------------------|---|------|----|------|---|-----|
| 1.6 |                  |   |      |    |      |   | a.: |
| 1.3 |                  |   | <br> |    | <br> |   | 0.1 |
|     |                  |   | <br> |    | <br> |   |     |
| 02  | and and a second |   | <br> |    |      |   |     |
| 0.1 |                  |   |      |    |      |   |     |
| .L  | _                |   |      |    | _    | _ | _   |





Threshold Value ..... @ Specified Reliability --- @ 50% Reliability

Report generated on: 10/22/2018 9:35 AM

Version: 2.3.1-hotfix-

Created<sup>by:</sup> on: 8/26/2015 12:00 AM

Approved<sup>by:</sup> on: 8/26/2015 12:00 AM

Page 2 of 20





## **Traffic Inputs**







### **Traffic Volume Monthly Adjustment Factors**

|     | Class 4                               | Class 5      | Class 6     | Class 7     | Class 8                                                                                                        | Class 9     | Class 10            | Class 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Class 12      | Class 13       |
|-----|---------------------------------------|--------------|-------------|-------------|----------------------------------------------------------------------------------------------------------------|-------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|
| Dec |                                       |              |             |             |                                                                                                                |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |
| Nov | 6-0                                   | 6.0          | 0.0         | 0.0         | <b>6</b> .0                                                                                                    | 0.1         | 2                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2             | 1.0            |
| Occ |                                       |              |             |             |                                                                                                                |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |
| Sea | T management                          |              |             |             | and a second | 1.0         | T have been as      | inimization in 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C management  |                |
| Rug |                                       |              |             |             |                                                                                                                |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |
| Jul |                                       |              |             |             |                                                                                                                | 2           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |
| Jun |                                       |              |             |             |                                                                                                                |             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |
| nay | wasser                                | asses de     |             |             |                                                                                                                |             | auaau <sup>ti</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | and the second |
| Har | 9                                     |              | 49          |             |                                                                                                                | q           |                     | annan a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>a</i> :    |                |
| Fea |                                       |              |             |             |                                                                                                                |             |                     | and the second se |               |                |
| Jan |                                       |              |             | 2           |                                                                                                                | 0.0         |                     | 5 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                |
|     | C C C C C C C C C C C C C C C C C C C | 10000 - 111- | N426 N442   |             | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                        | 11-8880     | 1.2 0.0 0.0         | 1110000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 4 4 4 1 K 4 | 20000-111      |
|     | Adl, Factor                           | Ad1, Factor  | Ad1. Factor | Ad1. Factor | Ad1. Factor                                                                                                    | Ad1. Factor | Ad1. Factor         | Ad1, Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ad1. Factor   | Ad1, Factor    |







### **Tabular Representation of Traffic Inputs**

### Volume Monthly Adjustment Factors Level 3: Default MAF

| Month     |     |     |     |     | Vehicl | e Class |     |     |     |     |
|-----------|-----|-----|-----|-----|--------|---------|-----|-----|-----|-----|
| Month     | 4   | 5   | 6   | 7   | 8      | 9       | 10  | 11  | 12  | 13  |
| January   | 0.9 | 0.8 | 0.8 | 0.7 | 0.8    | 0.9     | 0.9 | 0.9 | 0.9 | 0.9 |
| February  | 0.9 | 0.8 | 0.8 | 0.8 | 0.9    | 0.9     | 0.9 | 0.9 | 1.0 | 0.8 |
| March     | 1.0 | 0.9 | 0.8 | 1.1 | 1.0    | 1.0     | 1.0 | 1.0 | 0.9 | 0.9 |
| April     | 1.0 | 1.0 | 0.9 | 1.0 | 1.0    | 1.0     | 1.1 | 1.0 | 1.0 | 1.1 |
| May       | 1.1 | 1.1 | 1.0 | 1.3 | 1.1    | 1.0     | 1.1 | 1.1 | 1.1 | 1.0 |
| June      | 1.1 | 1.1 | 1.2 | 1.1 | 1.1    | 1.0     | 1.1 | 1.0 | 1.1 | 1.0 |
| July      | 1.1 | 1.2 | 1.5 | 1.3 | 1.2    | 1.0     | 1.1 | 1.1 | 1.1 | 1.3 |
| August    | 1.1 | 1.2 | 1.3 | 1.0 | 1.1    | 1.0     | 1.1 | 1.1 | 1.1 | 1.0 |
| September | 1.1 | 1.1 | 1.1 | 1.0 | 1.1    | 1.0     | 1.1 | 1.1 | 1.0 | 1.1 |
| October   | 1.0 | 1.0 | 1.0 | 1.0 | 1.0    | 1.0     | 1.0 | 1.0 | 0.9 | 1.1 |
| November  | 0.9 | 0.9 | 0.9 | 0.9 | 0.9    | 1.0     | 1.0 | 1.0 | 1.0 | 1.0 |
| December  | 0.9 | 0.8 | 0.8 | 0.8 | 0.8    | 0.9     | 0.8 | 0.9 | 0.9 | 0.9 |

### **Distributions by Vehicle Class**

| Vehicle Class | AADTT<br>Distribution (%) | Growth Factor |          |  |  |
|---------------|---------------------------|---------------|----------|--|--|
|               | (Level 3)                 | Rate (%)      | Function |  |  |
| Class 4       | 5.1%                      | 1.25%         | Compound |  |  |
| Class 5       | 32.3%                     | 1.25%         | Compound |  |  |
| Class 6       | 18%                       | 1.25%         | Compound |  |  |
| Class 7       | 0.3%                      | 1.25%         | Compound |  |  |
| Class 8       | 4.9%                      | 1.25%         | Compound |  |  |
| Class 9       | 36.8%                     | 1.25%         | Compound |  |  |
| Class 10      | 1.2%                      | 1.25%         | Compound |  |  |
| Class 11      | 0.7%                      | 1.25%         | Compound |  |  |
| Class 12      | 0.5%                      | 1.25%         | Compound |  |  |
| Class 13      | 0.2%                      | 1.25%         | Compound |  |  |

### Axle Configuration

| Traffic Wander                         | Axle Configuration | Vehicle                 |       |         |
|----------------------------------------|--------------------|-------------------------|-------|---------|
| Mean wheel location (in)               | 18.0               | Average axle width (ft) | 8.5   | Class   |
| Traffic wander standard deviation (in) | 10.0               | Dual tire spacing (in)  | 12.0  | Class 4 |
| Design lane width (ft)                 | 12.0               | Tire pressure (psi)     | 120.0 | Class 5 |
| Besign falle Math (it)                 | 12.0               | The pressure (poi)      | 120.0 | Class C |

| Average Axle Spa            | acing | Wheelbase does not apply |
|-----------------------------|-------|--------------------------|
| Tandem axle<br>spacing (in) | 51.6  |                          |
| Tridem axle<br>spacing (in) | 49.2  |                          |
| Quad axle spacing<br>(in)   | 49.2  |                          |

| Number of Axles per Truck |                |                |                |              |  |  |  |  |
|---------------------------|----------------|----------------|----------------|--------------|--|--|--|--|
| Vehicle<br>Class          | Single<br>Axle | Tandem<br>Axle | Tridem<br>Axle | Quad<br>Axle |  |  |  |  |
| Class 4                   | 1.53           | 0.45           | 0              | 0            |  |  |  |  |
| Class 5                   | 2.02           | 0.16           | 0.02           | 0            |  |  |  |  |
| Class 6                   | 1.12           | 0.93           | 0              | 0            |  |  |  |  |
| Class 7                   | 1.19           | 0.07           | 0.45           | 0.02         |  |  |  |  |
| Class 8                   | 2.41           | 0.56           | 0.02           | 0            |  |  |  |  |
| Class 9                   | 1.16           | 1.88           | 0.01           | 0            |  |  |  |  |
| Class 10                  | 1.05           | 1.01           | 0.93           | 0.02         |  |  |  |  |
| Class 11                  | 4.35           | 0.13           | 0              | 0            |  |  |  |  |
| Class 12                  | 3.15           | 1.22           | 0.09           | 0            |  |  |  |  |
| Class 13                  | 2.77           | 1.4            | 0.51           | 0.04         |  |  |  |  |

Truck Distribution by Hour does not apply

## Report generated on: 10/22/2018 9:35 AM

Version: 2.3.1-hotfix-

Created<sup>by:</sup> on: 8/26/2015 12:00 AM

Approved<sup>by:</sup> on: 8/26/2015 12:00 AM

Page 4 of 20





### AADTT (Average Annual Daily Truck Traffic) Growth

### \* Traffic cap is not enforced











Report generated on: 10/22/2018 9:35 AM

Version: 2.3.1-hotfix-

Created<sup>by:</sup> on: 8/26/2015 12:00 AM

Approved<sup>by:</sup> on: 8/26/2015 12:00 AM

Page 5 of 20





| Climate Inputs                                                                             |                                        |
|--------------------------------------------------------------------------------------------|----------------------------------------|
| Climate Data Sources:                                                                      | § 14<br>§ 12                           |
| Climate Station Cities:Location (lat lon elevationDURANGO LA PLATA, C37.14300 -107.76000 6 | n(ft))<br>5685                         |
| Annual Statistics:                                                                         | Mar<br>Mar<br>May<br>Not<br>Not<br>Not |
| Mean annual air temperature (°F) 4                                                         | 7.04                                   |
| Mean annual precipitation (in)                                                             | 8.09                                   |
| Freezing index (°F - days) 62                                                              | 3.93                                   |
| Average annual number of freeze/thaw cycles: 16                                            | 3.30 Vvater table depth 10.00 (ft)     |
| Monthly Climate Summary:                                                                   |                                        |
| G d d d d d d d d d d d d d d d d d d d                                                    | 2007 4/2011 L/2012                     |













### Hourly Air Temperature Distribution by Month:

| < -13° F              | -13° F to -4° F   | -4° F to 5° F        | 5° F to 14° F | 14° F to 23° F | 23° F to 32° F  | 32° F to 41° F              | 41° F to 50° F                          |
|-----------------------|-------------------|----------------------|---------------|----------------|-----------------|-----------------------------|-----------------------------------------|
| Class                 |                   | - 5                  | 69            | 208            | 10 210          | 17 105                      | 124                                     |
| ackin                 | · 2 516           | 35                   | 218           | 210            | 65 212          | - 19<br>153<br>118          | - 179<br>- 172<br>- 172                 |
| - +                   | 45                | 85                   |               | 155            | 200 200         |                             | 123 105                                 |
| 5                     | 2 40              | 54                   | 462           | 164            | 42 216          | 47 132<br>47 149<br>48      | 10<br>173<br>173<br>373                 |
| 1002                  | 15                | 62                   | - 161         |                | 10<br>10<br>10  | 123<br>100-<br>02           | 140 195                                 |
| 5002 Sa               |                   | - 15.<br>J           | 77            | 167            | - Z41<br>18     | - 58 112 - 229              | 67<br>113<br>10                         |
|                       | 9 16              |                      | - 95          | 162            | 32 320          | - 72.                       | 150                                     |
| foar jo               | . 1.              | <u>.</u>             | - 20          | 98             | 47 122          | 45 88 111                   | 93<br>146<br>139                        |
| 102                   | -2 S              | so so                | 116           | 164            | 317 304         | 27<br>71<br>28              |                                         |
| 2002                  | - 8               | 32                   | 73            | 120            | 18<br>45<br>251 | 1009<br>1009<br>1002        | - 77 180<br>180<br>167                  |
| 1817 Role             |                   |                      | <u>- 70</u>   |                | sa<br>16        | - 134<br>- 134<br>- 19 - 91 | 105<br>144<br>- 25<br>136<br>226        |
| t = a a<br># of Hours | ୍ଥିତ<br>≢of Hours | ≈ s s s<br>#of Hours | a fHours      | # of Hours     | Dat #of Hours   | Toot # of Hours             | and |

| 50° F to 59° F                          | 59° F to 68° F | 68° F to 77° F         | 77° F to 86° F | 86° F to 95° F  | 95° F to 104° F                                                                                                 | 104° F to 113° | > 113º F   |
|-----------------------------------------|----------------|------------------------|----------------|-----------------|-----------------------------------------------------------------------------------------------------------------|----------------|------------|
| ~1                                      | 1 1 1 1        | LITTI                  | 1 7 7 7        | 1 1 1 1 1       | 1 0 1 1 0 1 0                                                                                                   |                | LITT       |
| 124                                     | 調              | 133                    | 40 75          |                 |                                                                                                                 |                |            |
| 542                                     | - 120          | 62 138                 | 30             |                 |                                                                                                                 |                |            |
| 171                                     | 108            | 88 132                 | - 14           |                 | 2                                                                                                               |                |            |
| 161 222                                 | 157            | 138                    | - 27           |                 |                                                                                                                 |                |            |
| 200 - 185<br>Sign - 185                 | 140            | - 93                   | 22             |                 |                                                                                                                 |                |            |
| 144 209                                 | 137            | 116                    | 1 66           |                 |                                                                                                                 |                |            |
| 135                                     | 133            | - 93                   | 1 39           |                 |                                                                                                                 |                |            |
| 197<br>197                              | 160            | 88                     | - 26<br>58     |                 |                                                                                                                 |                |            |
| A 136 221                               | 108            | 94 254                 | 1 1            |                 |                                                                                                                 |                |            |
| 139                                     | 129            | 107                    | - 18           | 13              | 3                                                                                                               |                |            |
| 132 132                                 | 152            | 124                    |                | - 13            |                                                                                                                 |                |            |
| 3 140                                   | 116            | 883                    | - 37           |                 | the second se |                |            |
| 10 -15 -137                             | 175            | 123                    | - 87           |                 |                                                                                                                 |                |            |
| See 2 153                               | 134            | 73                     | 50             | -               |                                                                                                                 |                |            |
| 125                                     | 167            | 113                    | -21            |                 |                                                                                                                 |                |            |
| 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 | 100.           | 40<br>80<br>120<br>150 | 200            | 40<br>80<br>120 | 0.8<br>0.8<br>1.5<br>2                                                                                          | 02             | 00         |
| # of Hours                              | # of Hours     | # of Hours             | # of Hours     | # of Hours      | # of Hours                                                                                                      | # of Hours     | # of Hours |







### **Design Properties**

### **HMA Design Properties**

| Use Multilayer Rutting Model                        | False | Layer Name                       | Layer Type              | Interface<br>Friction |  |
|-----------------------------------------------------|-------|----------------------------------|-------------------------|-----------------------|--|
| Using G* based model (not nationally<br>calibrated) | False | Layer 1 Flexible : R3 Level 1 SX | Flexible (1)            | 1.00                  |  |
| Is NCHRP 1-37A HMA Rutting Model<br>Coefficients    | True  | Layer 2 Non-stabilized Base :    | Non-stabilized Base (4) | 1.00                  |  |
| Endurance Limit                                     | -     | ABC Class o                      | Outernardia (E)         | 1.00                  |  |
| Use Reflective Cracking                             | True  | Layer 5 Subgrade : A-T-b         | Subgrade (5)            | -                     |  |
| Structure - ICM Properties                          |       |                                  |                         |                       |  |

AC surface shortwave absorptivity 0.85

Report generated on: 10/22/2018 9:35 AM

Version: 2.3.1-hotfix-

Created<sup>by:</sup> on: 8/26/2015 12:00 AM

Approved<sup>by:</sup> on: 8/26/2015 12:00 AM

Page 8 of 20





### Thermal Cracking (Input Level: 1)

| Indirect tensile strength at 14 °F (psi)                   | 555.90   |  |
|------------------------------------------------------------|----------|--|
| Thermal Contraction                                        |          |  |
| Is thermal contraction calculated?                         | True     |  |
| Mix coefficient of thermal contraction (in/in/ºF)          | -        |  |
| Aggregate coefficient of thermal contraction<br>(in/in/°F) | 5.0e-006 |  |
| Voids in Mineral Aggregate (%)                             | 16.2     |  |

|                    | Creep Compliance (1/psi) |           |           |  |  |  |  |
|--------------------|--------------------------|-----------|-----------|--|--|--|--|
| Loading time (sec) | -4 °F 14 °F 32 °         |           |           |  |  |  |  |
| 1                  | 2.78e-007                | 3.91e-007 | 2.65e-007 |  |  |  |  |
| 2                  | 3.11e-007                | 4.79e-007 | 3.91e-007 |  |  |  |  |
| 5                  | 3.48e-007                | 5.57e-007 | 6.33e-007 |  |  |  |  |
| 10                 | 3.74e-007                | 6.94e-007 | 9.55e-007 |  |  |  |  |
| 20                 | 4.22e-007                | 8.31e-007 | 1.28e-006 |  |  |  |  |
| 50                 | 4.63e-007                | 1.08e-006 | 1.99e-006 |  |  |  |  |
| 100                | 5.28e-007                | 1.35e-006 | 2.72e-006 |  |  |  |  |



Report generated on: 10/22/2018 9:35 AM

Version: 2.3.1-hotfix-

Created<sup>by:</sup> on: 8/26/2015 12:00 AM

Approved<sup>by:</sup> on: 8/26/2015 12:00 AM

Page 9 of 20





### HMA Layer 1: Layer 1 Flexible : R3 Level 1 SX(75) PG 58-28 United













### Analysis Output Charts







Report generated on: 10/22/2018 9:35 AM

Version: 2.3.1-hotfix-

Created<sup>by:</sup> on: 8/26/2015 12:00 AM

Approved<sup>by:</sup> on: 8/26/2015 12:00 AM

Page 11 of 20















Version: 2.3.1-hotfix-

Created<sup>by:</sup> on: 8/26/2015 12:00 AM

Approved<sup>by:</sup> on: 8/26/2015 12:00 AM

Page 12 of 20







Report generated on: 10/22/2018 9:35 AM

Version: 2.3.1-hotfix-

Created<sup>by:</sup> on: 8/26/2015 12:00 AM

Approved<sup>by:</sup> on: 8/26/2015 12:00 AM

Page 13 of 20













Version: 2.3.1-hotfix-

Created<sup>by:</sup> on: 8/26/2015 12:00 AM

Approved<sup>by:</sup> on: 8/26/2015 12:00 AM

Page 14 of 20





### Layer Information

### Layer 1 Flexible : R3 Level 1 SX(75) PG 58-28 United

| Asphalt           |                |          |  |
|-------------------|----------------|----------|--|
| Thickness (in)    | 6.0            |          |  |
| Unit weight (pcf) | 145.0          |          |  |
| Poisson's ratio   | Is Calculated? | True     |  |
|                   | Ratio          | -        |  |
|                   | Parameter A    | -1.63    |  |
|                   | Parameter B    | 3.84E-06 |  |

### Asphalt Dynamic Modulus (Input Level: 1)

| T ( °F) | 0.5 Hz  | 1 Hz    | 10 Hz   | 25 Hz   |
|---------|---------|---------|---------|---------|
| 14      | 2067099 | 2488999 | 2785899 | 2873299 |
| 40      | 930800  | 1472800 | 2008399 | 2196999 |
| 70      | 207600  | 439600  | 838700  | 1039200 |
| 100     | 52500   | 101200  | 215300  | 291900  |
| 130     | 24100   | 35400   | 60900   | 78900   |

### Asphalt Binder

| Temperature (°F) | Binder Gstar (Pa) | Phase angle (deg) |
|------------------|-------------------|-------------------|
| 136.4            | 2227.6            | 80                |
| 147.2            | 1068.2            | 82                |
| 158              | 540.1             | 84                |

### General Info

| Name                                | Value |
|-------------------------------------|-------|
| Reference temperature (°F)          | 70    |
| Effective binder content (%)        | 10.7  |
| Air voids (%)                       | 5.5   |
| Thermal conductivity (BTU/hr-ft-ºF) | 0.67  |
| Heat capacity (BTU/lb-ºF)           | 0.23  |

### Identifiers

| Field                   | Value                      |
|-------------------------|----------------------------|
| Display name/identifier | R3 Level 1 SX(75) PG 58-28 |
| Description of object   | Mix ID # FS1918            |
| Author                  | CDOT                       |
| Date Created            | 4/3/2013 12:00:00 AM       |
| Approver                | CDOT                       |
| Date approved           | 4/3/2013 12:00:00 AM       |
| State                   | Colorado                   |
| District                |                            |
| County                  |                            |
| Highway                 |                            |
| Direction of Travel     |                            |
| From station (miles)    |                            |
| To station (miles)      |                            |
| Province                |                            |
| User defined field 1    | SX                         |
| User defined field 2    |                            |
| User defined field 3    |                            |
| Revision Number         | 0                          |

Report generated on: 10/22/2018 9:35 AM

Version: 2.3.1-hotfix-

Createdby: on: 8/26/2015 12:00 AM

Approved<sup>by:</sup> on: 8/26/2015 12:00 AM

Page 15 of 20